eine Verallgemeinerung des Riemann-Integrals,
die die Integration einer wesentlich umfangreicheren Klasse von Funktionen
erlaubt. Das Lebesgue-Integral einer im Intervall
beschränkten Funktion
beruht auf der Lebesgue-Summe

wobei n die Zahl der
Teilintervalle, fi den Wert der
Funktion im Teilintervall i bezeichnet und m
das Lebesgue-Mass der Menge Ei von Punkten ist,
deren Funktionswert approximativ durch fi
gegeben ist. Konvergieren die Längen der Teilintervalle gleichmässig gegen Null,
so existiert der
und gibt den Wert des Lebesgue-Integrals von f auf I an. Da jede
abzählbare Menge im Lebesgueschen Sinne eine Nullmenge ist, kann die Funktion f auf einer abzählbaren oder jeder anderen Nullmenge
abgeändert werden, ohne dass sich der Wert des Lebesgue-Integrals ändert.
Das freie Technik-Lexikon. Fundierte Informationen zu allen Fachgebieten der Ingenieurwissenschaften, für Wissenschaftler, Studenten, Praktiker & alle Interessierten. Professionell dargeboten und kostenlos zugängig.
Techniklexikon
Modernes Studium der Physik sollte allen zugängig gemacht werden.